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Analyses avec circuits RC

Méthodes précédentes utilisables avec capacités et inductances???
o Rappels: Capacité et inductance
o Analyses de circuit avec un seul type de composant : Facile !!!
o Analyses de circuit avec une combinaison de composants : Plus délicat !!!

Analyse temporelle pour circuits RC (idem RL, et RLC)
o Equation différentielle simple pour signaux carrés (semaine 8)
o Equation différentielle complexe pour sighaux sinusoidaux

Analyse fréquentielle pour circuits RC (idem RL, et RLC)
o Exploitation des nombres complexes = Rappels essentiels
o Notion d’impédance complexe
o Analyse comparable avec études des semaines passées

Rapidement arriver a la dia 19



Rappels composants R, C, L

1) Circuit avec résistances uniguement

U=R.I

Composants série, paralleles faciles a fusionner
Transformation étoiles <—> triangles s'appliquent facilement

2) Circuit avec condensateurs uniguement

it) =

Composants série, paralleles faciles a fusionner
Transformation étoiles <—> triangles s'appliquent aussi

3) Circuit avec inductances uniguement

d
T@=""w
_Lai
u(t) = 1t

Composants série, paralleles faciles a fusionner
Transformation étoiles <—> triangles s'appliquent aussi

4) Combinaisons : on se limitera aux combinaisons R et C

Plus délicat car on travaille sur des équations différentielles

> Facile




Circuit de base et analyse temporelle

i(t) On extrait des électrons
—__ ] i i

R i(t) +
uft) J D ¢ T l u(t) _ T

On injecte des électrons

Champ
électrique

_ du
— u(t) —us(6) — C% ouencore u(t) = ug(t) + RC—=
R dt dt

i(t)

C’est une équation différentielle du premier ordre :
* Avec des sin |I'analyse exploitera une méthode plus simple avec les « complexes »
* Analyse temporelle substituée par une analyse fréquentielle



Exemples de signaux [1]

vy L'équation différentielle est posée de la méme
u(t) <> CT us(t) fagon pour les deux cas, seule I'excitation change

Saut indiciel :

Signal sinusoidal :
exemple de variations brutales d’une horloge

L permanent Transitoire
Transitoire Permanent
u Ar /

, fa
o~ YV

Dans les deux cas, nous supposons la capacité déchargée au départ (u,(0) = 0)

v

t

Au bout d’un « certain » temps, la sortie atteint son régime permanent



Avec résistance, pas de déphasage entre u et i pour un sin

J i(t) i(t) ¢ilt)
Remarque:
u(t) () R lu(t) R lu(t) * |, et U,sont des amplitudes

*  Parfois on les note [, et U,

* On utilise aussi tres souvent la valeur
u(t) = Uy.sin(ot) i(t) =1,.sin(wt) efficace notée | ou I et U ou U qui sera
exploitée dans le calcul des puissances

oy u(t) _ Ug.sin(wt) u(t) = R.ly.sin(wt
i(t) = R ° R © o-sin(wt) Conséquence:

: o A nouveau sin(wt) pour *i(t) = lp.sin(ot) =IV2. sin(ot)
sin(wt) pour u et i qui u et i qui sont en phase * ult) = Up.sin(ot) =UV2. sin(ot)

sont en phase

Conclusion : Avec R, courant et tension sont en phase



Avec condensateur, déphasage entre u et i pour un sin

1 TR
u(t)1<> T C lu(t) ﬁ: C lu(t) Un peu plus complexe aveci(t)
i(t) = ly.sin(wt), or i(t) = Cdlé—(tt)

u(t) = Ugy.sin(mt) i(t).dt

o\ ~du(t)
Eti(t) = CT

i(t)=CoU,.sin(wt +§)

mais c’est u(t) gu’on cherche = du=
i(H.dt flo.sin(u)t).dt
=

¢

= CoU,.cos(mwt)

finalement: [ du=u(t) = [

constantes
Entre u et i, il y a un déphasage de +E,
. . . T . T
i(t) qui est en avance sur u(t) —Ipcos(wt) ~losin(wt+3)  Igsin(wt -=)
u(t) = = =
wC wC wC

entre u et i, il ya encore un déphasage de +§

. , 0 .
Conclusion : Déphasage constant de > entre courant et tension



Avec inductance, déphasage entre u et i pour un sin

i(t)

] lu(t) u(t)l@

i(t) i(t)

L 1 u(t) plus complexe avec u(t)

—-100r—

— 00~

Cette fois on commence avec la source de

di(t (.dt
courant i(t) = l,.sin(ot) u(t) = Uy.sin(ot), or u(t) = L—— ( ) = di= == n
Etu(t) = Ldl(t) = Lwly.cos(mt) finalement: [ di=i(t) = fu(tz dt = fUO'Sln]Ewt)'dt
U(t)—LCOlo.SIn((Dt +§) (t) _ —Uocos(wt) B —Uosin(a)t+ %) B UOSil'l((J)t —izt)
= wlL B wL B wlL

Entreu eti, il yaun déphasage de +§et

., ) . On a encore un déphasage entre u et i de +~ en faveur de u(t)
cette fois c’est u(t) qui est en avance sur i(t) 2

. , (| .
Conclusion : Déphasage constant de > entre courant et tension



Commentaires

Constat:
* Avec le condensateur on observe un déphasage constant de /2 entre i(t) et u,(t) : i(t) est en avance
* Avec I'inductance on observe un déphasage constant de ©/2 entre i(t) et ug(t) : u(t) est en avance
Tension aux bornes de R de la forme: U=R.I

Iosin(wt —?n)

Tension aux bornesde C: u(t) = de la forme U= ﬁ.lz (I, différent du courant )

Tension aux bornes de L : u(t)=Lwl,.sin(ot +§) de la forme U= w.L.I, (I, différent du courant |)

0 comparable a une résistance qui diminue avec la fréquence
®.L comparable a une résistance qui augmente avec la fréquence

Objectif: Proposer un outil mathématigue permettant :
» D’absorber le probleme du déphasage (Asin(wt) + Bsin(wt —g) =? Asin(wt)+ Bsin(wt)= (A+B)sin(wt))
» D’assimiler la capacité (idem inductance) a une résistance « variable » -> Impédance,

* Reproduire le déphasage en temps utile,
* Représentation aisée quelle que soit la fréquence -> Diagramme de Bode



Mode de représentation du sin avec cercle trigonometrique

Fonction de base: y(t) = A.sin(mt)

er

v
—

Ne pas représenter le signal sur I'axe des 'Y
mais sur le cercle trigonométrique.
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Ftude du cercle trigonométrique

Comment définir un point M sur le cercle ??
Ya Plusieurs écritures:

[

yq [ \ M e Coordonnées polaires : M = pe‘9 avecot=60etA=p

> e Projection de M sur |'axe des X et I'axe des Y
X X
\‘// Projection sur Y: y1 = p.sin(wt) = p.sin(0)

Projection sur X: x1 = p.cos(wt) = p.cos(0)

11



Autres représentations

y 4 A . L
Im %+ Axe des imaginaires
M M
Yi] P
Y1 { 9‘ R < A
0 ;1 ;( 0 y > Re
1 Axe des réels

Analyse avec des vecteurs : On introduit une nouvelle représentation:
Source d’inspiration pour Le plan complexe

représentation de Fresnel . . -
M=x, +iy, pourles mathématiciens

OM = Ox,+ 0y, M =x, +j.y, pour les physiciens

0 = wt i et jprécisent qu’il s'agit de 'axe des imaginaires
12



Intérét de ces représentations

s Re

Nous pourrons nous affranchir d’utiliser des sin(wt)
A tout moment, nous pouvons retrouver : y; = p.sin(0) et x, = p.cos(0)

car M (ou OM) véhicule deux informations:

1) Sa « longueur » appelée module d’apres Pythagore
2 2 2
loM[|” = [[0xy]|"+ [[03]]

pour simplifier p = x¥ + y? soit p =/ x2 + y?

2) Son déphasage par rapport a I'axe des X (réels) appelé argument

. Y1 Y1 X1 X1
sin() == =————  cos(f) =— =——
P xZ+ y? P JxZ+ y?
yi Im L (Im Im
tg(09) x ~ Re g '\ 7, = @retgl 4, Pas tout a fait

13



Calcul de I'argument: 4 cas sont analysés

1) Si 6, se situe dans le premier quadrant

Im>0
Re>0

3) Si 0, se situe dans le troisieme quadrant

i
Im<0
-QK Re<0

0 > Re
Y1 Im
0; =+ arctg (—

Re

)

2) Si 0, se situe dans le second quadrant

Im>0
Re<O0

— Re

Im Im
0, =+ arctg (E) =1 — arctg (|ﬁ|>

4) Si 0, se situe dans le quatrieme quadrant

Im<O0
Re>0

Im
0, = arctg (E

) = —arctg

Im

Re

14




Autres propriétes des nombres complexes [1]

Im 4 Im 4
v | M M = X, + .y, Considérons les
f i trois déphasages
- A IX' > Re ou 8,, 6,, 85, ci-contre
1

M;
M = p.cos(0,) +]j. p.sin(6,)

AR

M, = p.cos(0) +j. p.sin(0)
ou M, =p.cos(0) =p

/

Im 4
M,

0N

1) Passerde M; aM,: M, = p.cos(nt/2) +j.p.sin(m/2)
M, =j.p.sin(nt/2), soit M, =j.p ouencore M, =j.M,;

Conséquence 1:  Ajouter un déphasage de ©/2 a un nombre M
revient a “multiplier M parj”

1N



Autres propriétés des nombres complexes [2]

2) Passer de M; a Ms:

Ms = p.cos(mt) +j.p.sin(mw),

M; = p.cos(n) =- p =- My, soit M3 =- M,

conséquence 2.a: ajouter un déphasage de wa un nombre M revient a “multiplier M par-1"

conséquence 2.b:

3) Passer de M a My:

Pour passer de M, a M3 on a aussi: M3 =j.M, = j2M,

j2=-1

M, = p.cos(3n/2) +j.p.sin(31/2),

M4 = jpSIn(3TE/2) =- Jp =- j'Mll soit M4 =- JM]_

conséquence 3.a: ajouter un déphasage de 31t/2 a un nombre M revient a “multiplier M par -j ”

conséquence 3.b:

conséquence 4:

Pour passer de M3 a M, on a aussi: M, =j.M3= j2M, = 3.M;
J- =]

J=-*ifi=1jet jf =¥ = ¥j=-(-1) =1

Im a

a

M,

ﬁ M>1 Re

Im 4

(7

M,

=

M,
0;

16



Notion d'impédance complexe

Avec R nous avons vu que:

Avec C nous avons vu que:
i(t) = I,.sin(wt)

us(t) = R.I,.sin(wt) = U,.sin(wt)

ug(t) = % .sin (a)t — 7—2T)

Idéalement: il faudrait avoir la forme K.sinwt pour travailler avec R et C sans se préoccuper du déphasage.

Question:  Comment transformer M, = K. sin(ot - ©/2) en K,. sin(wt)????
Solution:  K;. sin(owt - ©/2) = K,. sin(mt)

Nous avons vu qu'il fallait multiplier par j3 = -j, donc M, = K;. sin(ot - ©/2) = -j.K,. sin(mt)
via

Iy . Iy | Iy
Application avec C:  us(t) = oc S (a)t _E) =wC.Sln(wt) C.sm(a)t)

Comparons R, Cet L pour i(t) =1,.sin(mt)
e avecR:u(t) =R.i(t)

e avec C:|ug(t) = R..i(t) =Z.i(t) |> us =Zc.iouZ, = ]Tlc (Impédance complexe)

e avec L:(u/(t) = R.i(t) =Z..i(t)

- Us =Z;.iouZ =jwl (Impédance complexe)
Ecriture impropre

17



Petite parenthese calcul module et argument
Coordonnées polaires adaptées pour calcul de produit et de rapport
M, = p,e/ M, = p,el?:

Produit de deux expressions complexes

Ml'MZ = plejel_pzejez = pl' pz_ ej(91+92)

Rapport de deux expressions complexes

18



Application aux circuits

| |
L L
R R

u(t) l() C == u) = u l() Z I:I uy(t)

us(t)
u(t)

Calcul de

A Us
ou plutot de==
u

Ne pas laisser sous cette forme
Ce rapport est appelé FONCTION DE TRANSFERT.

C’est une expression complexe dont on peut calculer le module |H(jo)| et 'argument Arg(H(j»))

Module d’'un produit = Produit des modules

[H(jw)| =
— 2
Module d’un rapport = Rapport des modules \/1 + (wRC)

Argument d’un produit = Somme des arguments

Arg(H(jw)) = —arctg(oRC)
Argument d’un rapport = différence des arguments 19




Filtre passe-bas

La fonction de transfert calculée précédemment i) = 1
correspond a un filtre passe-bas - 1+ jwRC

' 1
Observations du module |ﬂ(]a))| B \/1 + (wRC)?

. sim-->0 alors |H(jo)| --> 1 (pas d’atténuation)

J si®-->°° alors | H(jw)| --> 0 (Atténuation compléte)

Observations de 'argument Arg(H(jo)) = - arctg(wRC)

. sio-->0 alors Arg(H(jm)) = - arctg(owRC) =0

e sim-->°° alors Arg(H(jw)) = - arctg(wRC) = -nt/2



o |0

R et Csont permutées
Calcul de H(jw) = u,/u

La fonction de transfert est
celle d’un filtre passe-haut

, JwRC
H(jw) =

1+ jwRC

Filtre passe-haut

e si®-->0 alors Arg(H(jw)) = /2

e si®-->°° alors Arg(H(jo))=n/2-1/2=0

{1
Z
U R R JwRC _
—_— = = = = H
3l O u T R+Ze p, 1 1+jwRC BGw)
jwC
()| = s
. H(w)| =
Observations du module \/1 n (a)RC)2
e si®-->0 alors |H(jo)| --> 0 (Atténuation complete)
e sim-->° alors |H(jo)| --> 1 (pas d’atténuation)
[
Observations de I'argument | Arg(H(jw)) = 2~ arctg(owRC)

21



Les composants de base

Application aux signaux sinusoidaux

Composant passif quelconque

<

Composants R, L, C

v i
%
R.i =
- R
il vjwC
JwC~
- 1
JWLL ijE

22



Cas particulier

Circuit RC et signaux sinusoidaux

R

Q

un | (D vl e

O <

Méme démarche (Kirchhoff) que dans la dia 4

_ (1 +ja)RC>
+v.jwC =v R =>v=

~
=ol [ I

A Se référer au cours sur les diagrammes de Bode pour | ‘analyse

1

&N T+ jwRC

23



Cas particulier

Circuit RLC et signaux sinusoidaux

O

=
~
N
— 00—

O <

i
= Ri+——+jol
U 13 jw JwLl
jwlL (jw)?LC
V=1Un = Un- . N2
R+%+ij 1+ jwRC + (jw)?LC

24



Exemples d’application: Calcul d’'impédances equivalentes

Ry
—
L
Lt
: I I
L2 _c 14
ZEQI
- R
: | I
l | | ||:|
L __% ___.

Zy= Ryt 7 = Ryt = IO
ZA 2 c — ‘2 ij_ ](J.)C
R 1+ jwR,C
TR+ Z, = g LHJORC T jwCR + 1+ jwR,C 1+ jwC(Ry + Ry)
1 jwC
p 1
U R+ZC 5 1 1+4jwRC
L7 jwC
R, R, R,(1 + jwR,C)
Zroy=Zz+R =————+4+ R =
Zrz = £p 1% ja)R1€+1+ jwR,C +1 1+ jwR,C
. _RiR,
, R1+R2+ij1RZC_(R +R) 1+jog—rR ¢
=k 1+jwR,C ' 7% 14 jwR,C

25
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