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Méthodes d'analyse: 
Thévenin, Norton, Superposition,

Quadripôles

Équations différentielles

Signaux quelconques

Sciences de base: électricité + semiconducteurs 
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• Méthodes précédentes utilisables avec capacités et inductances???
o Rappels : Capacité et inductance
o Analyses de circuit avec un seul type de composant : Facile !!!
o Analyses de circuit avec une combinaison de composants : Plus délicat !!!

• Analyse temporelle pour circuits RC (idem RL, et RLC)
o Équation différentielle simple pour signaux carrés (semaine 8)
o Équation différentielle complexe pour signaux sinusoïdaux

• Analyse fréquentielle pour circuits RC (idem RL, et RLC)
o Exploitation des nombres complexes → Rappels essentiels
o Notion d’impédance complexe
o Analyse comparable avec études des semaines passées

• Rapidement arriver à la dia 19

Analyses avec circuits RC
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Rappels composants R, C, L

1) Circuit avec résistances uniquement
• Composants série, parallèles faciles à fusionner
• Transformation étoiles <–> triangles s’appliquent facilement

2) Circuit avec condensateurs uniquement
• Composants série, parallèles faciles à fusionner
• Transformation étoiles <–> triangles s’appliquent aussi

3) Circuit avec inductances uniquement
• Composants série, parallèles faciles à fusionner
• Transformation étoiles <–> triangles s’appliquent aussi

4) Combinaisons : on se limitera aux combinaisons R et C
• Plus délicat car on travaille sur des équations différentielles
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Facile
𝑖(𝑡) =

𝑑𝑞

𝑑𝑡
a =

𝐶𝑑𝑢

𝑑𝑡
(𝑏)

𝑢(𝑡) =
𝐿𝑑𝑖

𝑑𝑡

𝑈 = 𝑅. 𝐼



Circuit de base et analyse temporelle

u(t) us(t)

i(t)

i(t)R
C

C’est une équation différentielle du premier ordre : 
• Avec des sin l'analyse exploitera une méthode plus simple avec les « complexes »
• Analyse temporelle substituée par une analyse fréquentielle

𝑖 𝑡 =
𝑢 𝑡 − 𝑢𝑆(𝑡)

𝑅
= 𝐶

𝑑𝑢𝑆
𝑑𝑡

𝑢 𝑡 = 𝑢𝑆 𝑡 + 𝑅𝐶
𝑑𝑢𝑆
𝑑𝑡
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On injecte des électrons

Champ
électrique

ou encore



Saut indiciel :
exemple de variations brutales d’une horloge

Dans les deux cas, nous supposons la capacité déchargée au départ (us(0) = 0)

Au bout d’un « certain » temps, la sortie atteint son régime permanent

Exemples de signaux [1]

u(t) us(t)

i

iR

C
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Transitoire
permanent

t

u

t
X

Permanent
Transitoire

Signal sinusoïdal :

L'équation différentielle est posée de la même
façon pour les deux cas, seule l'excitation change

X

u



Remarque:
• I0 et U0 sont des amplitudes
• Parfois on les note ෡𝐼0 et ෢𝑈0
• On utilise aussi très souvent la valeur

efficace notée I ou IEFF et U ou UEFF qui sera
exploitée dans le calcul des puissances

Conséquence:

• i(t) = I0.sin(t) =𝐼 2. sin(t)

• u(t) = U0.sin(t) =𝑈 2. sin(t)

Conclusion : Avec R, courant et tension sont en phase

u(t) u(t)R

i(t)

u(t) = U0.sin(t)

i t =
u(t)
R

=
U0.sin(ωt)

R

sin(t) pour u et i qui 
sont en phase

i(t) = I0.sin(t)

u t = 𝑅. I0.sin(ωt)

À nouveau sin(t) pour 
u et i qui sont en phase

u(t)

i(t)

R

i(t)

Avec résistance, pas de déphasage entre u et i pour un sin
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u(t) = U0.sin(t)

Et i t = C
du(t)
dt

= CU0.cos(t)

i t =CU0.sin(t +
𝜋

2
)

Entre u et i, il y a un déphasage de +
𝝅

𝟐
,

i(t) qui est en avance sur u(t)

u(t) u(t)C

i(t)

i(t) = I0.sin(t), or i t = C
du(t)
dt

mais c’est u(t) qu’on cherche ⇒ du=
i t .dt

C

finalement: ׬du =u t = ׬
i t .dt

C
= ׬

𝐈𝟎.sin ωt .dt

𝐂

u t =
−I0cos(𝜔𝑡)

𝜔𝐶
=
−I0sin(𝜔𝑡 +

𝜋
2
)

𝜔𝐶
=
I0sin(𝜔𝑡 −

𝜋
2
)

𝜔𝐶

entre u et i, il y a encore un déphasage de +
𝛑

𝟐

Un peu plus complexe avec i(t)

constantes

u(t)

i(t)

C

i(t)

Avec condensateur, déphasage entre u et i pour un sin

Conclusion : Déphasage constant de 
𝛑

𝟐
entre courant et tension 7



Avec inductance, déphasage entre u et i pour un sin

Cette fois on commence avec la source de 
courant i(t) = I0.sin(t)

Et u t = L
di(t)
dt

= LI0.cos(t)

u t =LI0.sin(t +
𝜋

2
)

Entre u et i, il y a un déphasage de +
𝝅

𝟐
et 

cette fois c’est u(t) qui est en avance sur i(t)

u(t) u(t)L

i(t)

u(t) = U0.sin(t), or u t = L
di(t)
dt

⇒ di=
u t .dt

L

finalement: ׬di =i t = ׬
u t .dt

L
= ׬

𝐔𝟎.sin ωt .dt

𝐋

i t =
−U0cos(𝜔𝑡)

𝜔𝐿
=
−U0sin(𝜔𝑡 +

𝜋
2
)

𝜔𝐿
=
U0sin(𝜔𝑡 −

𝜋
2
)

𝜔𝐿

On a encore un déphasage entre u et i de +
𝛑

𝟐
en faveur de u(t)

plus complexe avec u(t)u(t)

i(t)

L

i(t)
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Conclusion : Déphasage constant de 
𝛑

𝟐
entre courant et tension



Constat:  
• Avec le condensateur on observe un déphasage constant de /2 entre i(t) et us(t) :  i(t) est en avance
• Avec l’inductance on observe un déphasage constant de /2 entre i(t) et us(t) : u(t) est en avance

Tension aux bornes de R de la forme: 𝑈 = 𝑅. 𝐼

Tension aux bornes de C : u t =
I0sin(𝜔𝑡 −𝜋

2
)

𝜔𝐶
de la forme  𝑈 =

1

𝜔.𝐶
. 𝐼2 (𝐼2 différent du courant I)

Tension aux bornes de L : u t =LI0.sin(t +
𝜋

2
) de la forme 𝑈 = 𝜔. 𝐿. 𝐼2 (𝐼2 différent du courant I)

1

𝜔.𝐶
comparable à une résistance qui diminue avec la fréquence

.L comparable à une résistance qui augmente avec la fréquence

Objectif: Proposer un outil mathématique permettant :

• D’absorber le problème du déphasage (Asin(𝜔𝑡) + Bsin(𝜔𝑡 −
𝜋

2
) = ?, Asin(𝜔𝑡)+ Bsin(𝜔𝑡)= (A+B)sin(𝜔𝑡)) 

• D’assimiler la capacité (idem inductance) à une résistance « variable » -> Impédance,
• Reproduire le déphasage en temps utile,
• Représentation aisée quelle que soit la fréquence -> Diagramme de Bode

Commentaires
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Mode de représentation du sin avec cercle trigonométrique

Fonction de base:    y(t) = A.sin(t)
Y

t

A

-A

y1
X

Y

Ne pas représenter le signal sur l’axe des Y 
mais sur le cercle trigonométrique.
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Étude du cercle trigonométrique

Comment définir un point M sur le cercle ?? 
Plusieurs écritures:

• Coordonnées polaires :  𝑀 = 𝜌𝑒𝑖𝜃 avec t = 𝜃 et A = 𝜌

• Projection de M sur l’axe des X et l’axe des Y

Projection sur Y: 𝑦1 = 𝜌. sin(ω𝑡) = 𝜌. sin(𝜃)

Projection sur X: 𝑥1 = 𝜌. cos(ω𝑡) = 𝜌. cos(𝜃)

X

Y



y1

x1

M


11



Autres représentations

Analyse avec des vecteurs : 
Source d’inspiration pour 
représentation de Fresnel

On introduit une nouvelle représentation: 
Le plan complexe

M = x1 + i.y1 pour les mathématiciens
M = x1 + j.y1 pour les physiciens

i et j précisent qu’il s’agit de l’axe des imaginaires

X

Y


y1

x1

M

O Re

Im


y1

x1

M

Axe des imaginaires

Axe des réels
0



𝑂𝑀 = 𝑂𝑥1+ 𝑂𝑦1

𝜃 = 𝜔𝑡
12



Intérêt de ces représentations

Nous pourrons nous affranchir d’utiliser des sin(t)
À tout moment, nous pouvons retrouver :  y1 = .sin() et x1 = .cos()

car M (ou 𝑂𝑀) véhicule deux informations:

2) Son déphasage par rapport à l’axe des X (réels) appelé argument

1) Sa « longueur » appelée module d’après Pythagore

𝑂𝑀
2
= 𝑂𝑥1

2
+ 𝑂𝑦1

2

pour simplifier  𝜌2 = 𝑥1
2 + 𝑦1

2 soit  𝜌 = 𝑥1
2 + 𝑦1

2

Re

Im


y1

x1

M

0



X

Y


y1

x1

M

O

sin 𝜃 =
𝑦1
𝜌
=

𝑦1

𝑥1
2 + 𝑦1

2
cos 𝜃 =

𝑥1
𝜌
=

𝑥1

𝑥1
2 + 𝑦1

2

tg 𝜃 =
𝑦1
𝑥1

=
𝐼𝑚

𝑅𝑒
𝜃 = tg−1

𝐼𝑚

𝑅𝑒
= 𝑎𝑟𝑐𝑡𝑔

𝐼𝑚

𝑅𝑒
Pas tout à fait
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Calcul de l’argument: 4 cas sont analysés 

1) Si 1 se situe dans le premier quadrant

Im > 0
Re > 0

2) Si 2 se situe dans le second quadrant

Im > 0
Re < 0

3) Si 3 se situe dans le troisième quadrant

Im < 0
Re < 0

4) Si 4 se situe dans le quatrième quadrant

Im < 0
Re > 0

Re

Im



y1

x1

M

0
Re

Im



y1

x1

M

0

Re

Im



y1

x1

M

0
Re

Im

y1

x1

M

0 

𝜃1 = 𝑎𝑟𝑐𝑡𝑔
𝐼𝑚

𝑅𝑒

𝜃4 = 𝑎𝑟𝑐𝑡𝑔
𝐼𝑚

𝑅𝑒
= −𝑎𝑟𝑐𝑡𝑔

𝐼𝑚

𝑅𝑒

𝜃2 = 𝜋 + 𝑎𝑟𝑐𝑡𝑔
𝐼𝑚

𝑅𝑒
= 𝜋 − 𝑎𝑟𝑐𝑡𝑔

𝐼𝑚

𝑅𝑒

𝜃3 = 𝜋 + 𝑎𝑟𝑐𝑡𝑔
𝐼𝑚

𝑅𝑒 14



Autres propriétés des nombres complexes [1]

M = x1 + j.y1

ou

M = .cos(1) + j. .sin(1)

Considérons  les 
trois déphasages 

θ1, θ2, θ3, ci-contre

M1 = .cos(0) + j. .sin(0)
ou M1 = .cos(0) = 

1) Passer de M1 à M2:       M2 = .cos(/2) + j..sin(/2)
M2 = j..sin(/2),   soit M2 = j. ou encore M2 = j.M1

Conséquence 1: Ajouter un déphasage de /2 à un nombre M 
revient à “multiplier M par j ”

Re

Im



y1

x1

M

0 Re

Im

 M1

M2

M3

M4





15

Re

Im

 M1

M2



2) Passer de M1 à M3:  M3 = .cos() + j..sin(),  

M3 = .cos() = -  = - M1, soit M3 = - M1

conséquence 2.a:  ajouter un déphasage de  à un nombre M revient à  “multiplier M par -1 ”

Pour passer de M2 à M3 on a aussi:  M3 = j.M2 =  j2.M1

conséquence 2.b: 

3) Passer de M1 à M4: M4 = .cos(3/2) + j..sin(3/2), 

M4 =  j..sin(3/2) = - j. = - j.M1, soit M4 = - j.M1

conséquence 3.a: ajouter un déphasage de 3/2 à un nombre M revient à “multiplier M par -j ”

Pour passer de M3 à M4 on a aussi:  M4 = j.M3 =  j2.M2 = j3.M1

conséquence 3.b: 

conséquence 4: -j = -j*j/j = 1/j et  j4 = j3*j =  -j*j = -(-1) = 1

Autres propriétés des nombres complexes [2]
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𝑗2 = −1

𝑗3 = −𝑗

Re

Im

 M1

M2

M3



Re

Im

 M1

M2

M3

M4







Notion d’impédance complexe

Avec R nous avons vu que:

𝑢𝑆 𝑡 = 𝑅. 𝐼0. sin 𝜔𝑡 = 𝑈0. sin 𝜔𝑡

Avec C nous avons vu que:

𝑢𝑆 𝑡 =
𝐼0
𝜔𝐶

. sin 𝜔𝑡 −
𝜋

2

Idéalement: il faudrait avoir la forme K.sint pour travailler avec R et C sans se préoccuper du déphasage.

Question:  Comment transformer M1 = K1. sin(t - /2) en K2. sin(t)????

Solution: K1. sin(t - /2) = K2. sin(t)
Nous avons vu qu’il fallait multiplier par j3 = -j,  donc M1 = K1. sin(t - /2) = -j.K1. sin(t)

Application avec C:

Comparons R, C et L pour  i(t) = I0.sin(t)  
• avec R: us(t) = R.i(t)

• avec C: us(t) = RC.i(t) = ZC.i(t)  → 𝑢𝑠 = 𝑍𝐶.𝑖 où 𝑍𝐶 =
1

𝑗𝜔𝐶
(Impédance complexe)

• avec L: us(t) = RL.i(t) = ZL.i(t) → 𝑢𝑠 = 𝑍𝐿.𝑖 où ZL = 𝑗𝜔𝐿 (Impédance complexe)

𝑢𝑆 𝑡 =
𝐼0
𝜔𝐶

. sin 𝜔𝑡 −
𝜋

2
= −𝑗

𝐼0
𝜔𝐶

. sin 𝜔𝑡 =
𝐼0

𝑗 𝜔𝐶
. sin 𝜔𝑡
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Écriture impropre

𝑖 𝑡 = 𝐼0. sin 𝜔𝑡



𝑀1 = 𝜌1𝑒
𝑗𝜃1 𝑀2 = 𝜌2𝑒

𝑗𝜃2

𝑀1. 𝑀2 = 𝜌1𝑒
𝑗𝜃1 . 𝜌2𝑒

𝑗𝜃2 = 𝜌1. 𝜌2. 𝑒
𝑗(𝜃1+𝜃2)

𝑀1

𝑀2

=
𝜌1𝑒

𝑗𝜃1

𝜌2𝑒
𝑗𝜃2

=
𝜌1
𝜌2
𝑒𝑗(𝜃1−𝜃2)

Petite parenthèse calcul module et argument
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Produit de deux expressions complexes

Coordonnées polaires adaptées pour calcul de produit et de rapport

Rapport de deux expressions complexes



Application aux circuits

us(t)

R

C u(t)

R

ZC
us(t)u(t)

Calcul de 
𝑢𝑆(𝑡)

𝑢(𝑡)
ou plutôt de 

𝑢𝑆

𝑢

Ce rapport est appelé FONCTION DE TRANSFERT. 
C’est une expression complexe dont on peut calculer le module |𝐻(j)| et l’argument Arg(𝐻(j))

Module d’un produit = Produit des modules

Module d’un rapport = Rapport des modules

Argument d’un produit = Somme des arguments 

Argument d’un rapport = différence des arguments 

𝑢𝑆
𝑢
=

𝑍𝐶
𝑅 + 𝑍𝐶

=

1
𝑗𝜔𝐶

𝑅 +
1

𝑗𝜔𝐶

=
1

1 + 𝑗𝜔𝑅𝐶
= 𝐻(𝑗𝜔)

𝐻(𝑗𝜔) =
1

1 + (𝜔𝑅𝐶)2

19

Ne pas laisser sous cette forme

Arg(𝐻(𝑗𝜔)) = −arctg(𝑅𝐶)



Filtre passe-bas

La fonction de transfert calculée précédemment 
correspond à un filtre passe-bas

Observations du module

• si  --> 0  alors |𝐻(j)| --> 1 (pas d’atténuation)

• si  --> ∞ alors |𝐻(j)| --> 0 (Atténuation complète)

Observations de l’argument

• si  --> 0  alors Arg(𝐻(j)) = - arctg(RC) = 0

• si  --> ∞ alors Arg(𝐻(j)) = - arctg(RC) = -/2

Arg(𝐻(j)) = - arctg(RC)

𝐻 𝑗𝜔 =
1

1 + 𝑗𝜔𝑅𝐶

𝐻(𝑗𝜔) =
1

1 + (𝜔𝑅𝐶)2

20



Filtre passe-haut

R et C sont permutées
Calcul de 𝐻(j) =  us/u

Observations du module

• si  --> 0  alors |H(j)| --> 0 (Atténuation complète)

• si  --> ∞ alors |H(j)| --> 1 (pas d’atténuation)

Observations de l’argument

• si  --> 0  alors Arg(H(j)) = /2

• si  --> ∞ alors Arg(H(j)) = /2 - /2 = 0

La fonction de transfert est 
celle d’un filtre passe-haut

𝑢𝑆
𝑢
=

𝑅

𝑅 + 𝑍𝐶
=

𝑅

𝑅 +
1

𝑗𝜔𝐶

=
𝑗𝜔𝑅𝐶

1 + 𝑗𝜔𝑅𝐶
= 𝐻(𝑗𝜔)

𝐻(𝑗𝜔) =
𝑗𝜔𝑅𝐶

1 + 𝑗𝜔𝑅𝐶

Arg(𝐻(𝑗𝜔)) =
𝜋

2
− arctg(𝑅𝐶)

𝐻(𝑗𝜔) =
𝜔𝑅𝐶

1 + (𝜔𝑅𝐶)2
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us(t)R

C

u(t) R

ZC

us(t)u(t)



Les composants de base
Application aux signaux sinusoïdaux

Composants R, L, C

Zv

A

B

i

v = f1(i)

i = f2(v)

R

v i

Composant passif quelconque

1

𝑗𝜔𝐶
𝑖

𝑅. 𝑖
𝑣

𝑅

𝑣 𝑗𝜔𝐶

𝑗𝜔𝐿𝑖
1

𝑗𝜔𝐿
𝑣

22

C

L



v

i

C

R

uIN

Cas particulier
Circuit RC et signaux sinusoïdaux

Se référer au cours sur les diagrammes de Bode pour l ’analyse!
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𝑖 =
𝑢𝐼𝑁 − 𝑣

𝑅
= 𝑣. 𝑗𝜔𝐶 ⇒

𝑢𝐼𝑁
𝑅

=
𝑣

𝑅
+ 𝑣. 𝑗𝜔𝐶 = 𝑣

1 + 𝑗𝜔𝑅𝐶

𝑅
⇒ 𝑣 = 𝑢𝐼𝑁.

1

1 + 𝑗𝜔𝑅𝐶

Même démarche (Kirchhoff) que dans la dia 4



v

i

R

uIN

C

L

Cas particulier
Circuit RLC et signaux sinusoïdaux

𝑣 = 𝑢𝐼𝑁.
𝑗𝜔𝐿

𝑅 +
1

𝑗𝜔𝐶
+ 𝑗𝜔𝐿

= 𝑢𝐼𝑁.
(𝑗𝜔)2𝐿𝐶

1 + 𝑗𝜔𝑅𝐶 + (𝑗𝜔)2𝐿𝐶

𝑢𝐼𝑁 = 𝑅𝑖 +
𝑖

𝑗𝜔𝐶
+ 𝑗𝜔𝐿𝑖

24
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R1

R2 C

𝑍𝑨 = 𝑅2 + 𝑍𝐶 = 𝑅2 +
1

𝑗𝜔𝐶
=
1 + 𝑗𝜔𝑅2𝐶

𝑗𝜔𝐶

𝑍𝐸𝑄1 =
𝑅1. 𝑍𝐴

𝑅1 + 𝑍𝐴 =

𝑅1.
1 + 𝑗𝜔𝑅2𝐶

𝑗𝜔𝐶

𝑅1 +
1+ 𝑗𝜔𝑅2𝐶

𝑗𝜔𝐶

=
𝑅1. (1 + 𝑗𝜔𝑅2𝐶)

𝑗𝜔𝐶𝑅1 + 1+ 𝑗𝜔𝑅2𝐶
=

𝑅1. (1 + 𝑗𝜔𝑅2𝐶)

1 + 𝑗𝜔𝐶(𝑅1 + 𝑅2)

R1

R2

C

𝑍𝑩 =
𝑅1. 𝑍𝐶

𝑅1 + 𝑍𝐶
=

𝑅1.
1
𝑗𝜔𝐶

𝑅1 +
1
𝑗𝜔𝐶

=
𝑅1

1 + 𝑗𝜔𝑅1𝐶

𝑍𝐸𝑄2 = 𝑍𝐵 + 𝑅2 =
𝑅1

𝑗𝜔𝑅1𝐶 + 1
+ 𝑅 =

𝑅1

𝑗𝜔𝑅1𝐶 + 1
+
𝑅2(1 + 𝑗𝜔𝑅1𝐶)

1 + 𝑗𝜔𝑅1𝐶

𝑍𝐸𝑄2 =
𝑅1 + 𝑅2 + 𝑗𝜔𝑅1𝑅2𝐶

1 + 𝑗𝜔𝑅1𝐶
= 𝑅1 +𝑅2 .

1 + 𝑗𝜔
𝑅1𝑅2

𝑅1 + 𝑅2
𝐶

1 + 𝑗𝜔𝑅1𝐶

𝑍A

𝑍B

Exemples d’application: Calcul d’impédances équivalentes 

𝑍𝐸𝑄1

𝑍𝐸𝑄2
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